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Abstract

In physics-based animation linear complementarity problems (LCPs) have
historically been used as models of contact forces between rigid bodies. Re-
cently LCPs are being deployed for other types of animation like deformable
models, fluids, and granular material. Thus, LCPs are becoming a general
important fundamental model. Hence, there is a real need for providing
the numerical foundation for solving LCPs with numerical methods that are
suitable for computer graphics. This is the void that these course notes tries
to fill out – providing a toolbox of solutions for people in physics-based
animation. The contribution of these notes is twofold. First, we explain
the nature of LCPs and discuss the properties of the LCPs encountered in
physics-based animation. Second, we present a range of numerical meth-
ods for solving the LCPs. To help make our results available to others we
supplement our course notes with Matlab implementations of all iterative
methods discussed.

Keywords: Linear Complementarity Problems, Newton Methods, Splitting
Methods, Interior Point Methods, Convergence Rate, Performance Study.
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1 Introduction

The linear complementarity problems (LCPs) are notorious in computer graph-
ics as being hard to solve and difficult to understand. However, LCPs are im-
portant general purpose models that extend beyond rigid body dynamics where
they found initial applications [Bar89, Bar93, Bar94, Bar95]. It is evident that
now deformable models, granular materials and fluids are being formulated
using LCPs [DDKA06, BBB07, OGRG07, CM11, OTSG09, GZO10, AO11].

Previous work in the field of computer graphics on numerical methods for
solving LCPs are sparse. Baraff [Bar94] introduced a Dantzig pivoting method
to the graphics community. More recently Lemke’s pivoting method has received
some attention [Hec04, Kip07, Ebe10]. There are examples of projected Gauss–
Seidel (PGS) type methods [Erl07, CA09, GZO10]. These works often overlook
the problem that PGS methods may not converge on the problems that are
being solved. Recently, a multilevel PGS method was presented [CM11] but did
not provide any convergence guarantees. In [OGRG07] a multilevel method
for solving the elastic deformation of a deformable model was combined with
a PGS-style solver. However, the paper did not address multigrid PGS. Many
details on LCPs can be found in applied mathematics textbooks [Mur88, CPS92].

We speculate that LCPs will become even more attractive models on a wider
scope in computer graphics once fast and efficient numerical solutions are easily
accesible by researchers in simple to implement numerical methods. This is why
we wrote these notes.

A supplementary code repository may be found in [Erl11] containing Matlab
implementations of all the iterative methods covered in these notes and a few
implementations in Python. C++ (uBLAS) and CUSP versions of few selected
methods are available by email request.

These course notes assume that the reader is familiar with linear algebra
and differential calculus. All numerical methods presented are described in
a pseudo-code style independent of any specific programming language, and
should be understandable by any computer scientist with rudimentary program-
ming skills.

2 Understanding The LCP

A one-dimensional complementarity problem (CP) can be stated as having two
real variables x, y ∈ R where we seek to make sure that they always satisfy the
complementarity constraint,

y > 0 ⇒ x = 0 or x > 0 ⇒ y = 0. (1)

This results in a flip-flop problem that either one variable is positive and the
other is zero or vice versa. This is written compactly in the notation

0 ≤ y ⊥ x ≥ 0. (2)
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The solution space forms a corner shape given by the positive x and y axes. If
we now extend the problem to include a linear relation between the y and x
variables, y = ax+ b where a, b ∈ R then we have a LCP,

y = ax+ b, (3a)

y ≥ 0, x ≥ 0, and xy = 0. (3b)

We can conceptually visualize the whole solution space by adding the linear
relation on top of the corner shape. Now the solutions for the model are the
intersection points between the line and the corner shape. This geometric tool
provides us with an approach to study the nature of LCPs. We ask the reader
to consider what would happen if b < 0 and a < 0 or b = 0 and a = 0?
Apparently, the model parameters a and b determine whether we can expect
to find a solution and whether a solution is unique or not. If we eliminate the
y-variable then the LCP can be written compactly as,

ax+ b ≥ 0, (4a)

x ≥ 0, (4b)

x (ax+ b) = 0. (4c)

This new form suggests a different approach to finding the solutions. We ob-
serve that the complementarity condition (4c) has the familiar form of a quadratic
function. Because of the inequalities (4a)- (4b) (called “unilateral constraints”),
any feasible x-value will result in a nonnegative value of the quadratic function.
The quadratic function will be zero only for a solution of the LCP. In other
words, we may rephrase the LCP as solving the optimization problem

x∗ = arg min
x

x (ax+ b) (5)

subject to
x ≥ 0 and ax+ b ≥ 0. (6)

Following this line of inspiration and exploring the connection to optimiza-
tion problems, we find the first-order optimality conditions (also known as the
Karush-Kuhn-Tucker conditions or KKT conditions for short) for the optimiza-
tion problem [NW99],

x∗ = arg min
x≥0

x

(
1

2
ax+ b

)
, (7)

to be (3), where y will be the Lagrange multiplier.
We will show this in detail. Let the objective function be written as f(x) =

x
(

1
2ax+ b

)
= 1

2ax
2 + bx then the Lagrangian is formally defined as

L(x, y) = f(x)− yx, (8)
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where we let y denote the Lagrange multiplier corresponding to the unilateral
constraint x ≥ 0. The first-order optimality conditions are

∇xL(x, y) = 0, (9a)

y ≥ 0, (9b)

x ≥ 0, (9c)

yx = 0. (9d)

Noting that ∇xL(x, y) = ax+ b− y = 0 we have y = ax+ b. Substitution yields

ax+ b ≥ 0 (10)

x ≥ 0 (11)

x (ax+ b) = 0 (12)

In other words we arrive at the LCP again. This is an important observation.
The LCP is not the same as an optimization problem. However, all first-order
optimality solutions for the optimization problem above will be a solution for
the LCP and vice versa. Again the optimization reformulation gives us insight
into whether one can expect to find solutions. For this 1D case we note that
whenever a > 0 one has a strict convex optimization problem subject to linear
constraints. Thus, constraint qualifications are fulfilled and one is guaranteed
a solution exists [NW99] (Constraint qualifications are sufficient conditions for
an optimization problem such that the tangent cone and the set of linearized
feasible directions are the same set. This are necessary regularity conditions
that ensure the first-order conditions are well-posed). If a < 0 then the objective
is unbounded from below and we may get into trouble. Observe the 1D LCP is
a combinatorial problem. As soon as one has chosen whether y or x is positive
then the problem is reduced to that of a linear relation from which the solution
is trivially computed.

Before moving into higher-dimensional spaces we will introduce more ideas
on reformulating the LCP into other types of problems. The first reformulation
we will present is known as the minimum map reformulation[Pan90, CPS92,
Mur88]. Essentially it can be written as

h(x, y) = min(x, y). (13)

Here the minimum map function, min(x, y), is defined as

min(x, y) =

{
x if x < y

y otherwise
(14)

Now a solution x∗, y∗ for the LCP fulfills h(x∗, y∗) = 0. Thus, we have

h(x∗, y∗) = 0 iff 0 ≤ y∗ ⊥ x∗ ≥ 0. (15)

This can be proven by a case-by-case analysis as shown here

6



h(x, y) y < 0 y = 0 y > 0
x < 0 < 0 < 0 < 0
x = 0 < 0 = 0 = 0
x > 0 < 0 = 0 > 0

For the LCP we know that y is a function of x and thus h is essentially only a
function of x, we write

h(x) = min(x, ax+ b). (16)

The benefit of this reformulation of the LCP is that we have converted our prob-
lem into a root finding problem. Thus, any solution x∗ for h(x) = 0 will be
a solution for our LCP. Another popular reformulation is based on the Fischer-
Burmeister function which is defined as [Fis92, CPS92, Mur88]

φ(x, y) ≡
√
x2 + y2 − x− y. (17)

Again we have a similar property as for the minimum map reformulation, namely

φ(x∗, y∗) = 0 iff 0 ≤ y∗ ⊥ x∗ ≥ 0. (18)

As before this can be proven by a case-by-case analysis.

φ(x, y) y < 0 y = 0 y > 0
x < 0 > 0 > 0 > 0
x = 0 > 0 = 0 = 0
x > 0 > 0 = 0 < 0

Again we have the option of solving our problem by finding the roots of φ(x) =
0. One may believe that one can simply plug the h(x) or φ(x) into the Newton–
Raphson method and find a solution. The problem with h and φ is that they are
nonsmooth functions implying that for certain points one can not compute the
derivatives ∂h(x)

∂x and ∂φ(x)
∂x . To circumvent the problem we will need nonsmooth

analysis that allows us to compute a generalized Jacobian which we can use to
create a generalized Newton method.

3 Going to Higher Dimensions

Having gained familiarity with the one-dimensional LCP we will now extend the
ideas to higher dimensions. Let b,x ∈ Rn and A ∈ Rn×n so y = Ax + b. For
the n-dimensional LCP we have for all i ∈ [1..n],

xi ≥ 0, (19a)

(Ax + b)i ≥ 0, (19b)

xi(Ax + b)i = 0. (19c)

We can write this compactly in matrix-vector notation as

x ≥ 0, (20a)

(Ax + b) ≥ 0, (20b)

xT (Ax + b) = 0. (20c)
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Observe that ≥ implies that the inequality holds element-wise. That is x ≥ 0
implies xi ≥ 0 for all i. We may now rediscover the reformulations we have in-
troduced earlier for the one-dimensional case. Assuming a symmetric A-matrix
the Quadratic Programming (QP) reformulation becomes

x∗ = arg min
x≥0

f(x) (21)

where f(x) = 1
2x

TAx + bTx. The first order optimality conditions of the opti-
mization problem is the LCP [NW99],

y = Ax + b, (22a)

y ≥ 0, (22b)

x ≥ 0, (22c)

xTy = 0. (22d)

Applying the minimum map reformulation in an element-wise manner results
in the nonsmooth root search problem,

H(x) = H(x,y) =

h(x1,y1)
. . .

h(xn,yn)

 = 0. (23)

The Fischer-Burmeister function can be applied individually to each comple-
mentarity constraint to create the root search problem,

F(x) = F(x,y) =

φ(x1,y1)
...

φ(xn,yn)

 = 0. (24)

From a practical viewpoint we are now concerned with how we can numerically
solve these various problem formulations which will be the topic of Section 5.
Before we study the numerical methods we will briefly in Section 4 motivate lin-
ear complementarity problem cases found in physics-based animation through
examples.

4 Examples of LCPs in Physics-based Animation

We will in the following two subsections show two examples of LCP models one
for contact forces and another for fluid-solid wall boundaries.

4.1 The Contact Force Model Example

We will present a LCP model for frictional contact force computations [Löt84,
ST96, AP97]. It should be noted that contact forces can be modeled in other
ways than using LCPs [BDCDA11, DBDB11, AT08]. We refer the interested
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reader to [BETC12] for complete references on alternatives. However, a lot
of recent work in the field of graphics is using LCPs [KSJP08, CA09, AFC+10,
SKV+12, TBV12]. Here we do not seek to cover all alternatives but settle for
motivating how a simulation problem can be written as a LCP problem. Rigor-
ous modeling details may be found in [BETC12].

To simplify notation we will without loss of generality present the model
abstractly as though we were considering a single contact point. To model non-
penetration one use the complementarity condition

0 ≤ vn ⊥ λn ≥ 0 (25a)

where vn is the normal component of the relative contact velocity and λn is the
magnitude of the normal contact impulse. This means if there is a separation
vn > 0 then there can be no normal contact impulse. On the other hand if there
is a normal contact impulse λn > 0 this is non-sticking and there must be a
resting contact vn = 0.

Stewart and Trinkle, Anitescu and Potra [ST96, AP97] among others lin-
earized the 3D friction model using a polyhedral cone. The polyhedral cone is
given by a positive span of K unit vectors ti. Let λn be the magnitude of the
normal impulse and λt =

[
λt1 · · · λtK

]T
the vector of friction impulses. The

linearized model is

0 ≤ vn ⊥ λn ≥ 0, (26a)

0 ≤ βe + vt ⊥ λt ≥ 0, (26b)

0 ≤

(
µλn −

∑
i

λti

)
⊥ β ≥ 0, (26c)

where e is a K dimensional vector of ones. The first complementarity constraint
models the non-penetration constraint as before. The second equation makes
sure that in case we do have friction λti > 0 for some i then β will estimate the
maximum sliding velocity along the ti’s directions. Observe this equation is a
K-dimensional vector equation. Its main purpose is to choose the ti direction
that best approximates the direction of maximum dissipation. The last equation
makes sure the friction force is bounded by the Coulomb friction cone. Notice
that if β > 0 the last equation will force the friction force to lie on the boundary
of the polyhedral friction cone. If β = 0 the two last equations model static
friction. That is no sliding can occur and any friction force inside the friction
cone is feasible.

Due to the positive span of ti one usually have several vti 6= 0 for sliding
motion. However, the model will pick only one λti to be non-zero. The ti-
direction chosen by the model is the one mostly opposing the sliding direction.
Only in the rare case where the sliding direction is symmetrically between ti-
directions the model may pick two positive λti values.

Observe that
∑
i λti = eTλt and we have v =

[
vn vt

]T
. From the dis-

cretization of the Newton–Euler equations we have the contact velocity-impulse
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relation v = Bλ + b. The term b contains initial velocity terms hence v is the
final velocity obtained by applying the impulse λ. Using all this we can write
the final matrix form of the contact model as,

0 ≤

Bnn Bnt 0
Btn Btt e
µ −eT 0


︸ ︷︷ ︸

A

λnλt
β


︸ ︷︷ ︸

x

+

bnbt
0


︸ ︷︷ ︸

b

⊥

λnλt
β


︸ ︷︷ ︸

x

≥ 0 (27)

where Bnn = JnM
−1JTn , Bnt = BT

tn = JnM
−1JTt , Btt = JtM

−1JTt , bn =
JnM

−1F, and bt = JtM
−1F. Here M is the generalized mass matrix, Jn

and Jt are the normal and tangential parts of the contact Jacobian such that
fn = −JTnλn and ft = −JTt λt, and F is a vector including external loads and
gyroscopic forces. Observe that A is non-symmetric and has a zero-diagonal
block. Further the subblock B is symmetric and positive-semi-definite (PSD)
matrix. As will be clear from Section 5 this implies that we can not use PGS for
the contact LCP model. Rather we can use either Lemke’s method or a Newton-
based method such as the one in Section 5.5.

There exist an alternative complementarity problem formulation which drops
the β-part of the model by ignoring principle of maximum dissipation. The re-
sulting model is no longer a LCP, but one could apply a splitting based PGS
method for this alternative model [Erl07]. This is similar to the method we
present in Section 5.2. The alternative model is physically flawed in the sense
that friction directions are decoupled and no convergence guarantees can be
given for the PGS-type method [SNE09, SNE10].

4.2 The Fluid LCP Model Example

Recently, LCPs are being used to model fluid-solid wall boundary conditions [BBB07,
CM11]. This is a recent approach and the literature is still sparse on exam-
ples. In physics-based animation most works use the incompressible Euler equa-
tions [Bri08]

ρ
∂u

∂t
= − (u · ∇)u−∇p− f , (28a)

∇ · u = 0, (28b)

where ρ is mass density, u is the velocity field, p is the pressure field and f is the
external force density. Traditionally one applies the boundary conditions p = 0
on free surfaces between fluid and vacuum and u · n = 0 between the fluid
and a static solid wall with unit outward normal n. For simplicity we here just
present ideas for a single phase flow in vacuum. The ideas trivially generalize to
multiphase flow and dynamic solid wall boundary conditions [BBB07, CM11].
In physics-based animation coarse grids are used to keep the computational cost
down. This causes a problem with the traditional solid wall boundary condition
u · n = 0. Namely that cell-size thick layers of fluid are getting stuck on walls.
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This appears visually unrealistic. Thus, it has been proposed to change the solid
wall boundary condition to,

0 ≤ p ⊥ u · n ≥ 0. (29)

This allows the fluid to separate from the wall. The condition u ·n > 0 enforces
p = 0 making the interface act like a free surface. On the other hand if u ·n = 0
then the fluid is at rest at the wall and there must be a pressure p > 0 acting on
the fluid to keep it at rest.

The current trend is to spatially discretize the equations of motion on a stag-
gered regular grid using finite difference approximations of the spatial deriva-
tives. For the temporal derivative one deals with the partial differential equa-
tion using a fractional step method (known as operator splitting) [Sta99]. This
means that in the last sub-step of the fractional step method one is solving,

un+1 = u′ − ∆t

ρ
∇p, (30a)

∇ · un+1 = 0, (30b)

where un+1 is the final divergence free velocity of the fluid and u′ is the fluid
velocity obtained from the previous step in the fractional step method. The
time-step is given by ∆t. Substituting the first equation into the second yields

∇ · un+1 = ∇ · u′ − ∆t

ρ
∇2p = 0. (31)

Introducing the spatial discretization, we obtain the Poisson equation which we
for notational convenience write as

Ap + b = 0, (32)

where p is the vector of all cell-centered pressure values and A ≡
{
−∆t

ρ ∇
2
}

and b ≡ {∇ · u′}. The matrix A is a symmetric diagonal banded matrix. In 2D
it will have 5 bands when using a 5-point stencil, in 3D it will have 7 bands for
a 7-point stencil. For regular grids all off diagonal bands have the same value.
Further, A is known to be a PSD matrix, but adding the boundary condition
p = 0 ensures that a unique solution can be found. Once the pressure vector
has been computed, it can be used to compute the last step of the fractional step
method (30a).

Let us revisit the complementarity problem arising from the modified bound-
ary condition and examine what happens if un+1 ·n > 0 at a solid wall boundary.
To start the analysis we will examine what happens with (28b) in an arbitrary
small control volume V around a solid wall boundary point,∫

V

∇ · un+1 dV =

∮
S

un+1 · n dS > 0. (33)
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The last inequality follows from the assumption that un+1 · n > 0. This means
that if we pick the row of the discrete Poisson equation that corresponds to the
solid wall boundary point, we obtain (for the jth row)

Aj∗p + bj > 0. (34)

If on the other hand un+1 · n = 0 at the solid wall, then we rediscover Aj∗p +
bj = 0. Although we skipped all the details of the discretization it should be in-
tuitively clear that the pressure solve for the new modified boundary conditions
is given by the LCP,

0 ≤ p ⊥ Ap + b ≥ 0. (35)

Having motivated LCP models through two examples we may now turn our
attention towards developing numerical methods for solving such LCP models.

5 The Numerical Methods

We may now embark on the real issue at hand – how to make robust, efficient
and fast methods for solving the kind of LCPs we encounter in physics-based
animation.

5.1 Pivoting Methods

We will exploit the combinatorial nature of the LCP to outline a guessing ap-
proach for finding a solution. In principle if all possible guesses are tested then
one obtains a naive direct enumeration method that will find all solutions. By
algebraic manipulation on y = Ax + b,

[
I −A

] [y
x

]
= b. (36)

We define the integer index set I ≡ {1, . . . , n} of all indices. Next we use two
index sets one of free variables yi > 0 and one of active variables yi = 0,

F ≡ {i | yi > 0} and A ≡ {i | xi > 0} . (37)

Without loss of generality and to keep our presentation simple we assume that
strict complementarity holds which means we never simultaneously have yi = 0
and xi = 0. This means we can assume that F ∩ A = ∅ and F ∪ A = I. The
idea is to create a method that can verify if a guess of F and A is a solution for
the given LCP. Now using the index sets we make the partitioning,

[
I∗F −A∗A

]︸ ︷︷ ︸
C

[
yF
xA

]
︸ ︷︷ ︸

s

= b. (38)
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where I∗F and A∗A are the sub matrices given by the column indices F and A.
Our problem is now simplified to verify if the linear programming (LP) problem

Cs = b subject to s ≥ 0 (39)

has a solution1. This is the same as testing if b is in the positive cone of C. That
is,

b ∈ {Cs | s ≥ 0} . (40)

Traditionally C is called a complementarity matrix. Observe that it is con-
structed by picking columns from either A or I. Clearly we can make 2n differ-
ent complementarity matrices. For low-dimensional LCPs this suggests a geo-
metric approach to find a solution for a LCP.

In the worst case the time complexity of guessing would be O(n32n) which
is not computationally efficient. Another strategy is to be clever in making
new guesses, for example, by applying a pivoting strategy that moves an in-
dex from one set to the other or some strategy that builds up the index sets
incrementally. Among direct methods for LCPs based on pivoting are the Lemke
method (a Matlab implementation can be found from CPNET) and the Keller
method [CPS92, Lac03].

The pivoting methods are capable of finding an accurate solution to the LCP
whereas the iterative methods we cover in Section 5.2- 5.5 only find approxi-
mate solutions. The accuracy is at the expense of having to form the A-matrix
in the first place whereas the iterative methods often can exploit a factorization
of the A-matrix. Even if A is sparse the fill in of the inverse matrix A−1

AA may
be dense implying that the worst case storage complexity of pivoting methods
is of O(n2) complexity.

The pivoting methods have some similarity with active set methods for con-
strained QP problems [NW99]. In the case of symmetric PSD A-matrices, one
may consider restating the problem as a QP problem rather than implementing
the pivoting method. This is especially beneficial due to the availability of QP
solvers such as MOSEK, CPLEX, LANCELOT, SQP, SNOPT and many more.

5.1.1 Incremental Pivoting “Baraff Style”

In the field of computer graphics Baraff presented an incremental pivoting
method [Bar94]. This method incrementally builds up the index sets while
keeping the complementarity constraints as invariants. In each iteration the
method computes A−1

AA. Whenever A is a symmetric positive definite (PD)
A−1
AA exist. Baraff reported that even when A is PSD (which is often the case in

practice due to redundant contact constraints), he was able to compute A−1
AA.

Baraff proves that the inner pivoting loop of his method only can be performed a
finite number of times as the index set A is never repeated. Thus, the cost of the
inner loop is at worst that of computing A−1

AA which is O(n3). The outer loop of

1We could more precisely have written s > 0 but s ≥ 0 also covers the more general non-strict
case.
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this method runs for at most n iterations yielding a pessimistic time complexity
of O(n4). Noticing that the pivot step only swaps one index and therefore only
changes the size of A by one it is clear that an incremental factorization method
can be used for computing A−1

AA. There exist incremental factorization running
in O(n2) time complexity. Thus, a more realistic overall time complexity for the
pivoting method is O(n3).

For completeness we outline the pivoting method here. In the kth iteration
a new index will be selected from the current set of unprocessed indices, U ≡
I \ {F ∪ A}. The index sets F and A are initially both empty. Throughout, the
complementarity conditions are kept as invariants. We will use superscript k to
denote the values at a given iteration number. For any unprocessed index j ∈ U
we implicitly assume xkj = 0. Initially in the kth iteration we use the partitioningykAykF

ykU

 =

AA,A AA,F AA,j
AF,A AF,F AF,j
AU,A AU,F AU,U

xkAxkF
0

+

bAbF
bU

 .
The next candidate index to be processed in the method is selected as the index
j ∈ U that minimize ykj as this corresponds to an index in U with a most violated
complementarity constraint. If for the minimum value the condition ykj ≥ 0 is
fulfilled, the method terminates as this would indicate that all the remaining
unprocessed indices trivially fulfill the complementarity conditions. If no unique
feasible minimum exists, one may pick a minimizing index at random. In the
kth iteration, we use the partitioning and keep the complementarity conditions
as invariants implying yk+1

A = 0 and xk+1
F = 0, so 0

yk+1
F

yk+1
j

 =

AA,A AA,F AA,j
AF,A AF,F AF,j
Aj,A Aj,F Aj,j

xk+1
A
0

xk+1
j

+

bAbF
bj

 .
The changes in yF and xA with respect to xk+1

j > 0 are given by

xk+1
A = xkA + ∆xAx

k+1
j ,

yk+1
F = ykF + ∆yFx

k+1
j ,

yk+1
j = ykj + ∆yjx

k+1
j

where

∆xA = −A−1
A,AAA,j ,

∆xA = −A−1
A,AAA,j ,

∆yj = −Aj,j −Aj,AA
−1
A,AAA,j .

The idea is to increase xk+1
j as mush as possible without breaking any of the

complementarity constraints. Thus, xk+1
j is limited by the blocking constraint
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set

BA ≡

{
−xkq
∆xq

∣∣∣∣∣ q ∈ A ∧ ∆xq < 0

}
, (42a)

BF ≡
{
−ykr
∆yr

∣∣∣∣ r ∈ F ∧ ∆yr < 0

}
. (42b)

If no blocking constraints exist, xk+1
j is unbounded by A and F . Thus, each

partition results in the bounds

xAj =

{
∞ : BA = ∅
minBA ;

, (43a)

xFj =

{
∞ : BF = ∅
minBF ;

, (43b)

xjj =

{
−yk

j

∆yj
; ∆yj < 0

0 ;
. (43c)

The solution for the value of xk+1
j will be the minimum bound. If a blocking

constraint is found from BA, a pivot operation is initiated moving the blocking
index from A to F and vice versa if a blocking constraint is found in BF .

The blocking constraint sets are changed as the active and free index sets A
and F are changed by a pivoting operation. This implies that one could increase
xk+1
j further after a pivoting step. Thus, we will continue to look for blocking

constraints and perform pivoting on them until no more blocking constraints
exist. Depending on the final value of xk+1

j , index j is assigned to either F or
A.

5.2 Splitting Methods

We introduce the splitting A = M −N. We let ck = b −Nxk, and LCP (20)
becomes

Mxk+1 + ck ≥ 0, (44a)

xk+1 ≥ 0, (44b)

(xk+1)T (Mxk+1 + ck) = 0. (44c)

This results in a fixed-point formulation where we hope that for a suitable choice
of M and N the complementarity subproblem might be easier to solve than the
original problem. Imagine for instance picking M as the diagonal of A. This
choice decouples all variables and we have a problem of n independent 1D
LCPs. Later we list other known choices for M. The splitting method can be
summarized as

Step 0 Initialization, set k = 0 and choose an arbitrary nonnegative x0 ≥ 0.
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Step 1 Given xk ≥ 0 solve the LCP (44).

Step 2 If xk+1 satisfy some stopping criteria then stop, otherwise set k ← k+ 1
and go to step 1.

The splitting is often chosen such that M is a Q-matrix 2. This means that
M belongs to the matrix class of matrices where the corresponding LCP has a
solution for all vectors ck. Clearly if xk+1 is a solution for (44) and we have
xk+1 = xk then by substitution into the subproblem given by (44) we see that
xk+1 is a solution of the original problem (20).

Next we will use the minimum map reformulation on the complementarity
subproblem that is equivalent to

min(xk+1,Mxk+1 + ck) = 0. (45)

Subtract xk+1 and multiply by minus one,

max(0,−Mxk+1 − ck + xk+1) = xk+1. (46)

Again we re-discover a fixed-point formulation. Let us perform a case-by-case
analysis of the ith component. If we play the mind game and assume(

xk+1 −Mxk+1 − ck
)
i
< 0 (47)

then we must have xk+1
i = 0. Otherwise our assumption is false and we must

have (
xk+1 −Mxk+1 − ck

)
i

= xk+1
i . (48)

That is
(Mxk+1)i = cki . (49)

For a suitable choice of M and back-substitution of ck = b−Nxk we have(
M−1

(
Nxk − b

))
i

= xk+1
i . (50)

Combining it all we have derived the closed form solution for the complemen-
tarity subproblem,

max
(
0,
(
M−1

(
Nxk − b

)))
= xk+1. (51)

Iterative schemes like these are often termed projection methods. The reason for
this is that if we introduce the vector zk = M−1

(
Nxk − b

)
then

xk+1 = max
(
0, zk

)
. (52)

That is, the k + 1 iterate is obtained by projecting the vector zk onto the posi-
tive octant. In a practical implementation one would rewrite the matrix equa-
tion (52) into a for loop that sweeps over the vector components and updates
the x-vector in place.

2Q-matrix means the LCP given by M and c has a solution for all values of c.
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One would want to use a clever splitting such that the inversion of M is
computationally cheap. Letting L, D and U be the strict lower, diagonal and
strict upper parts of A, then three popular choices are: the projected Jacobi
method M = D and N = L + U, the projected Gauss–Seidel (PGS) method
M = (L+D) and N = U, and the projected Successive Over Relaxation (PSOR)
method M = (D + λL) and N = ((1− λ)D− λU) where 0 ≤ λ ≤ 2 is the
relaxation parameter. More about this parameter in Section 5.3.

It is worthwhile to note that A must at least have nonzero diagonal for these
splittings to work. As far as we know there exist no convergence proofs in the
general case of A being arbitrary. However, given appropriate assumptions on
A such as being a contraction mapping or symmetric, one can make proofs of
global convergence [CPS92, Mur88]. In section 5.3 we take a different approach
to deriving the same iterative schemes. Here it follows by construction that if
A is symmetric and PSD then the splitting schemes will always converge. For
non-symmetric matrices one may experience divergence.

5.3 PGS and PSOR from QPs

In our second approach for deriving the PGS and PSOR iterative methods, we
will make use of the QP reformulation. Our derivation follows in the footsteps
of [Man84]. The reformulation allows us to prove convergence properties of
the PGS and PSOR methods. We assume that A is symmetric and PSD. Then,
the LCP can be restated as a minimization problem of a constrained convex QP
problem

x∗ = arg min
x≥0

f(x) (53)

where f(x) ≡ 1
2x

TAx + xTb. Given the ith unit axis vector êi where êij = 0

for all j 6= i and êii = 1 then the ith relaxation step consists in solving the
one-dimensional problem

τ∗ = arg min
x≥0

f(x + τ êi) (54)

and then setting x ← x + τ êi. One relaxation cycle consists of one sequential
sweep over all ith components.

The one-dimensional objective function can be rewritten as

f(x + τ êi) =
1

2
(x + τ êi)TA(x + τ êi) + (x + τ êi)Tb,

=
1

2
τ2Aii + τ(Ax + b︸ ︷︷ ︸

r

)i + f(x).

We find the unconstrained minimizer τu = − ri
Aii

. Considering the constraint
xi + τ ≥ 0 we find the constrained minimizer to be τc = max (τu,−xi) which
yields the final update rule for the relaxation step

xi ← max

(
0,xi −

ri
Aii

)
. (56)
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This is algebraically equivalent to the ith component in the PGS update (52).
Consider the polynomial g(τ) ≡ 1

2τ
2Aii + τri. We know Aii > 0 so the legs of

the polynomial are pointing upwards. The polynomial has one trivial root τ = 0

and a minimum at τ = − ri
Aii

where g
(
− ri

Aii

)
= − r2i

Aii
< 0. The other root is

found at τ = −2 ri
Aii

. Thus, any τ value in the interval between the two roots
has the property

τλ = −λ ri
Aii
⇒ g(τλ) < 0, ∀λ ∈ [0..2]. (57)

It follows that

f(x + τλê
i) = g(τλ) + f(x) ≤ f(x), ∀λ ∈ [0..2] (58)

with equality if τλ = 0. This results in the over relaxed version

xi ← max

(
0,xi − λ

ri
Aii

)
. (59)

This is in fact algebraically equivalent to the ith component of the PSOR update
and contains the PGS method as a special case of λ = 1. Observe that by (58) we
are guaranteed a non increasing sequence of iterates by our relaxation method.
The complete iterative method can be listed as

1 : method PSOR(N,λ,x,A,b)
2 : for k = 1 to N
3 : for all i
4 : ri ← Ai∗x + bi

5 : xi ← max
(

0,xi − λ ri
Aii

)
6 : next i
7 : next k
8 : end method

where N is the maximum number of allowed iterations and λ is the relaxation
parameter.

5.4 The Minimum Map Newton Method

Using the minimum map reformulation we have the root search problem where
H : Rn 7→ Rn is given by,

H(x) ≡

h(x1,y1)
. . .

h(xn,yn)

 = 0. (60)

Recall y = Ax + b so yi = Aiixi + bi +
∑
j 6=iAijxj , thus

Hi(x) ≡ h(yi,xi), (61a)

= min

Aiixi + bi +
∑
j 6=i

Aijxj

 ,xi

 . (61b)
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The idea is to use a Newton method to solve the nonsmooth equation (60).
To do that we need to generalize the concept of derivative [Pan90]. The non-
smooth function Hi(x) is a selection function of the affine functions, xi and
(Ax + b)i. Further, each Hi is Lipschitz continuous and since each of the com-
ponents fulfill this requirement, then so does H(x) [Sch94].

Definition 5.1 Consider any vector function F : Rn 7→ Rn. If there exist a func-
tion BF(x,∆x) that is positive homogeneous in ∆x, that is, for any α ≥ 0

BF(x, α∆x) = αBF(x,∆x), (62)

such that the limit

lim
∆x→0

F(x + ∆x)− F(x)−BF(x,∆x)

‖ ∆x ‖
= 0 (63)

exists, then we say that F is B-differentiable at x, and the function BF(x, ·) is
called the B-derivative.

Notice that since H(x) is Lipschitz and directionally differentiable, then it is
B-differentiable. The B-derivative BH(x, ·) is continuous, piecewise linear, and
positive homogeneous. Observe that the B-derivative as a function of x is a set-
valued mapping. We will use the B-derivative to calculate a descent direction
for the merit function,

θ(x) =
1

2
H(x)TH(x). (64)

It is clear that a minimizer of (64) is a solution of equation (60). We use this B-
derivative to formulate a linear subproblem whose solution will always provide
a descent trajectory to (64). In fact, the biggest computational task for solving
the nonsmooth and nonlinear system (60) is the solution of a large linear system
of equations. This is similar to what Billups does to solve his nonsmooth system
in [Bil95] and we repeat this same technique in this work.

The generalized Newton equation in the kth iteration is

H(xk) + BH(xk,∆xk) = 0. (65)

Each Newton iteration is finished by doing a correction of the previous iterate,

xk+1 = xk + τk∆xk (66)

where τk is called the step length and ∆xk is the Newton direction. The fol-
lowing theorems, see [Pan90, QS93, FK98, DLFK00], guarantee that ∆xk will
always provide a descent direction for the the merit function θ(x).

Theorem 5.1 Let H : Rn 7→ Rn be B-differentiable, and let θ : Rn → R be
defined by

θ(x) =
1

2
H(x)TH(x) (67)
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Then θ is B-differentiable and its directional derivative at xk in direction ∆xk is

Bθ(xk,∆xk) = H(xk)TBH(xk,∆xk). (68)

Moreover, if (65) holds then the directional derivative of θ is

Bθ(xk,∆xk) = −H(xk)TH(xk) (69)

Proof Since H is B-differentiable, (68) follows from the chain rule. Since
Bθ(xk,∆xk) = H(xk)TBH(xk,∆xk), we have from the Newton equation (65)
that Bθ(xk,∆xk) = −H(xk)TH(xk).

Observe that a direct consequence of (69) is that any solution ∆xk of the
generalized Newton equation (65) will always provide a descent direction to the
merit function θ(xk). The following theorem shows that even if we solve (65)
approximately, we can still generate a descent direction provided the residual is
not too big.

Theorem 5.2 Suppose we solve equation (65) approximately. That is, suppose
that ∆xk satisfy the residue equation,

rk = H(xk) + BH(xk,∆xk), (70)

and define the function θ(x) as above. Then, ∆xk will always provide a descent
direction for θ(xk) provided

‖ H(xk) + BH(xk,∆xk) ‖≤ γ ‖ H(xk) ‖ (71)

for some prescribed positive tolerance γ < 1.

Proof In order to show that the vector ∆x provide a descent direction for
θ(x) we need to prove that Bθ(xk,∆x) < 0. Suppose ∆xk satisfy (70), then
BH(xk,∆xk) = rk −H(xk). We have that

Bθ(xk,∆xk) = H(xk)TBH(xk,∆xk), (72a)

= H(xk)T (rk −H(xk)), (72b)

= −H(xk)TH(xk) + H(xk)T rk. (72c)

Now notice that Bθ(xk,∆xk) < 0 if and only if

H(xk)T rk < H(xk)TH(xk) (73)

or H(xk)T rk <‖ H(xk) ‖2. This implies that rk should lie inside a ball of radius
at least ‖ H(xk) ‖, in other words ‖ rk ‖≤ γ ‖ H(xk) ‖ for some γ < 1.

We will now present an efficient way of computing the B-derivative. Given the
index i we have,

Hi(x) =

{
yi if yi < xi

xi if yi ≥ xi
. (74)

Recall y = Ax + b. All of these are affine functions and from [Sch94] we can
compute the B-derivative BHij = ∂Hi

∂xj
∆xj as follows
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(1) If yi < xi then
∂Hi

∂xj
= Aij . (75)

(2) If yi ≥ xi then
∂Hi

∂xj
=

{
1 if j = i

0 otherwise
. (76)

We define two index sets corresponding to our choice of active selection func-
tions,

A ≡ {i | yi < xi} and F ≡ {i | yi ≥ xi} . (77)

Next we use a permutation of the indexes such that all variables with i ∈ F are
shifted to the end. Hereby we have created the imaginary partitioning of the
B-derivative,

BH(xk,∆xk) =

[
AAA AAF
0 IFF

] [
∆xkA
∆xkF

]
. (78)

Notice this convenient block structure with AAA a principal submatrix of A.
The matrix IFF is an identify matrix of the same dimension as the F .

If we use the blocked partitioning of our B-derivative from (78) then the
corresponding permuted version of the Newton equation (65) is[

AAA AAF
0 IFF

] [
∆xkA
∆xkF

]
= −

[
HA(xk)
HF (xk)

]
. (79)

Observe that this can be trivially reduced to

AAA∆xkA = AAFHF −HA. (80)

Our problem is reduced to a potentially smaller linear system in ∆xkA. Whether
an exact solution can be found for this reduced system depends on the matrix
properties of the original matrix A. For physics-based animation this matrix
could be symmetric PSD implying that the reduced matrix could inherit these
properties and one might end up with a singular system to solve. The good
news is that one does not need an accurate solution to guarantee a descent as
we proved previously. In practice we have found GMRES to be suitable as a
general purpose choice.

Due to the connection of the generalized Newton method with the classical
Newton method, global convergence is unlikely if we start with an arbitrary it-
erate x1. To remedy this we perform an Armijo type line search on our merit
function θ(·). The ideal choice for a step length τk would be a global mini-
mizer for the scalar function ψ(τ) = θ(xτ ) where xτ = xk + τ∆xk. In practice
this could be expensive to compute, requiring too many evaluations of θ(·) and
possibly Bθ(·, ·). The Armijo condition stipulates that the reduction in ψ(τ)
should be proportional to both the step length τk and the directional derivative
∇ψ(0) = Bθ(xk,∆xk). For a sufficient decrease parameter α ∈ (0, 1) we state
this as

ψ(τk) ≤ ψ(0) + ατk∇ψ(0). (81)
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To rule out unacceptably short steps we introduce a second condition, called the
curvature condition,

∇ψ(τk) ≥ σ∇ψ(0) (82)

where the curvature parameter is selected such that σ ∈ (α, 1). Conditions (81)
and (82) are known collectively as the Wolfe conditions. If the line search
method chooses its candidate step length appropriately, by using a back-tracking
approach, we can eliminate the extra condition (82). Now the Armijo condition
implies to find the largest h ∈ Z0 such that

ψ(τk) ≤ ψ(0) + ατk∇ψ(0) (83)

where τk = βhτ0, τ0 = 1, and the step-reduction parameter α < β < 1. In
Nocedal and Wright it reads that α is often quite small, say α = 10−4 and β = 1

2
is often used [NW99].

In practice we have observed that the minimum map Newton method may
converge to a local minimum corresponding to an infeasible iterate. To remedy
this we apply a projected Armijo back-tracking line search. This means we
project the line search iterate xτ = max(0,xk + τ∆xk) before computing the
value of the merit function ψ(τ) = θ(xτ ).

1 : method projected-line-search
2 : (ψ0,∇ψ0)← (θ(xk),Bθ(xk,∆xk))
3 : τ ← 1
4 : while forever
5 : xτ ← max(0,xk + τ∆xk)
6 : ψτ ← θ(xτ )
7 : if ψτ ≤ ψ0 + ατ∇ψ0 then
8 : return τ
9 : end if

10 : τ ← βτ
11 : end while
12 : end method

The back-tracking line search method we have outlined is general and could be
used with any merit function. In rare cases one may experience that τ becomes
too small. Thus, it may be beneficial to add an extra stop criterion after line 9
testing if τ < δ where 0 < δ � 1 is some user-specified tolerance. If the test
passes one simply returns the current value of τ as the τk value.

Many have commented that globalizing the minimum map Newton method
is difficult. As far as we know the projected back tracking line search has not
been reported in the literature. Instead Levenberg-Marquard style search direc-
tions are chosen with an occasional gradient descent direction [FK98, DLFK00].
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We now combine all the ingredients of the minimum map Newton method
into pseudo code.

1 : method minimum-map-Newton
2 : while forever
3 : yk ← Axk + b
4 : Hk ← min(yk,xk)
5 : A ← {i | yi < xi}
6 : F ← {i | yi ≥ xi}
7 : ∆xkF ← −Hk

F
8 : solve AAA∆xkA = AAFH

k
F −Hk

A
9 : τk ← projected-line-search(...)

10 : xk+1 ← xk + τk∆xk

11 : if converged then
12 : return xk+1

13 : end
14 : k ← k + 1
15 : end while
16 : end method

We will discuss possible stopping criteria later in Section 6.

5.5 The Fischer–Newton Method

We will introduce another Newton method based on [Fis92]. Many have inves-
tigated this formulation[FK98, KK98, DLFK00, CK00]. We use the reformulation

F(x) = F(x,y) =

φ(x1,y1)
...

φ(xn,yn)

 = 0. (84)

This is a nonsmooth root search problem solved using a generalized Newton
method. In an iterative fashion one solves the generalized Newton equation

J∆xk = −F(xk) (85)

for the Newton direction ∆xk. Here J ∈ ∂F(xk) is any member from the gen-
eralized Jacobian ∂F (xk). Then the Newton update yields

xk+1 = xk + τk∆xk (86)

where τk is the step length of the kth iteration.

Definition 5.2 Given F and let D ⊂ Rn be the set of all x ∈ Rn where F is
continuously differentiable. Further, assume F is Lipschitz continuous at x then
the B–subdifferential of F at x is defined as

∂BF(x) ≡
{
J

∣∣∣∣ ∃xk ⊂ D ∧ lim
xk→x

∂F(xk)

∂x
= J

}
. (87)
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Definition 5.3 Clarke’s generalized Jacobian of F at x is defined as the convex
hull of the B–subdifferential [Cla90],

∂F(x) ≡ co (∂BF(x)) . (88)

Let us look at an example. Consider the Euclidean norm e : R2 7→ R defined
as

e(z) ≡‖ z ‖=
√
zT z (89)

Then, for z ∈ R2 \ {0} we have

∂e(z) = ∂Be(z) =
∂e(z)

∂z
=

zT

‖ z ‖
∀z 6= 0. (90)

For z = 0 we have

∂Be(0) = {vT | v ∈ R2 ∧ ‖ v ‖= 1}, (91a)

∂e(0) = {vT | v ∈ R2 ∧ ‖ v ‖≤ 1}. (91b)

We now have most pieces to deal with the generalized Jacobian of the Fischer-
Burmeister function. For z =

[
x y

]T ∈ R2 we may write the Fischer-Burmeister
function as

φ(x, y) ≡ φ(z) ≡ e(z)− g(z) (92)

where g(z) =
([

1 1
]T

z
)

. From this we find

∂Bφ(z) = ∂Be(z)− ∂g(z)

∂z
, (93a)

∂φ(z) = ∂e(z)− ∂g(z)

∂z
. (93b)

Hence for z 6= 0,

∂φ(z) = ∂Bφ(z) =

{
zT

‖ z ‖
−
[
1 1

]T}
(94)

and

∂Bφ(0) = {vT −
[
1 1

]T | v ∈ R2 ∧ ‖ v ‖= 1}, (95a)

∂φ(0) = {vT −
[
1 1

]T | v ∈ R2 ∧ ‖ v ‖≤ 1}. (95b)

Having studied the one-dimensional case we can now move on to the higher-
dimensional case.

Theorem 5.3 The Generalized Jacobian of the Fischer-Burmeister reformulation
can be written as

∂F(x) ≡ Dp(x) + Dq(x)A (96)
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where Dp(x) = diag (p1(x), . . . , pn(x)) and Dq(x) = diag (q1(x), . . . , qn(x)) are
diagonal matrices. If yi 6= 0 or xi 6= 0 then

pi(x) =
xi√

x2
i + y2

i

− 1, (97a)

qi(x) =
yi√

x2
i + y2

i

− 1, (97b)

else if yi = xi = 0 then

pi(x) = ai − 1, (98a)

qi(x) = bi − 1 (98b)

for any ai, bi ∈ R such that ‖
[
ai bi

]T ‖≤ 1

Proof Assume yi 6= 0 or xi 6= 0 then the differential is

dFi(x,y) = d
((

x2
i + y2

i

) 1
2

)
− d (xi + yi) (99)

By the chain rule

dFi(x,y) =
1

2

(
x2
i + y2

i

)− 1
2 d
(
x2
i + y2

i

)
− dxi − dyi, (100a)

=
xidxi + yidyi√

x2
i + y2

i

− dxi − dyi, (100b)

=


(

xi√
x2
i + y2

i

− 1

)
︸ ︷︷ ︸

pi(x)

(
yi√

x2
i + y2

i

− 1

)
︸ ︷︷ ︸

qi(x)

[dxidyi

]
. (100c)

Finally dy = Adx, so dyi = Ai∗dx by substitution

dFi(x,y) =
(
pi(x)eTi + qi(x)Ai∗

)︸ ︷︷ ︸
∂Fi(x)

dx. (101)

The case xi = yi = 0 follows from the previous examples.

The next problem we are facing is how to solve the generalized Newton equa-
tion. The issue is that we need to pick one element J from ∂F(xk). We have
explored four strategies.

Random One strategy may be to pick a random value for all ai and bi where
xi = yi = 0.

Zero Instead of random values one may pick ai = bi = 0.

Perturbation Another strategy may be to perturb the problem slightly when-
ever xi = yi = 0. For instance given a user-specified tolerance 0 < ε � 1
one could use x′i = ε in-place of xi when evaluating the generalized Jaco-
bian.
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Approximation One could exploit the cases where the Newton equation is
solved with an iterative method such as preconditioned conjugate gra-
dient (PCG) method or generalized minimum residual (GMRES) method.
Then one only need to compute matrix vector products Jp for some given
search direction vector p. By definition of directional derivative

Jp = lim
h→0+

F(x + hp)− F(x)

h
. (102)

This means we can numerically approximate Jp using finite differences.

To globalize the Fischer–Newton method we apply the same projected Armijo
back-tracking line search explained previously. We redefine the natural merit
function to be,

θ(x) ≡ 1

2
F(x)TF(x). (103)

Assuming we have a solution to J∆xk = −F(xk) then by the chain rule we find
the directional derivative of the merit function to be,

∇θ(xk)T∆xk = F(x)TJ∆xk. (104)

These are the modifications needed in the projected back-tracking line search
method. Observe that an accurate solution for ∆xk will always result in a de-
scent direction as ∇θ(xk)T∆xk = −2θ(xk) < 0. Defining the residual vector as
rk = F(xk) + J∆xk and following the same recipe from our previous proof in
Section 5.4, one may show that if

‖ rk ‖< γ ‖ F(xk) ‖ (105)

for some prescribed 0 < γ < 1 then ∆xk will be a descent direction for the merit
function. Observe that this result is useful to determine a sufficient stopping
threshold for an iterative linear system method that will guarantee a descent
direction.

The pseudo code of the Fischer–Newton method is,

1 : method Fischer-Newton
2 : while forever
3 : solve J∆xk = −Fk
4 : τk ← projected-line-search(...)
5 : xk+1 ← xk + τk∆xk

6 : if converged then
7 : return xk+1

8 : end
9 : k ← k + 1

10 : end while
11 : end method

We will discuss possible stopping criteria later in Section 6.
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6 Tips, Tricks and Implementation Hacks

The Newton equations for both Newton methods can be solved using an iter-
ative linear system method. We have successfully applied the two Krylov sub-
space methods PCG or GMRES [Saa03]. GMRES is more general than PCG and
can be used for any non-singular matrix whereas PCG requires the matrix to
be symmetric PD. PCG can not be used for the full Newton equation in case of
the minimum map reformulation. However, for the Shur reduced system it may
be possible if the principal submatrix is symmetric PD. GMRES is more general
purpose and one incurs an extra storage cost for this.

The iterative linear system methods are an advantage in combination with
the finite difference approximation strategy that we introduced for the Fischer–
Newton method. The same trick could be applied for the minimum map Newton
method. The advantage from this numerical approximation is an overall numer-
ical method that does not have to assemble the global A-matrix. Instead it can
work with this matrix in an implicit form or using some known factorization of
the matrix. In particular for interactive rigid body dynamics this is an advantage
as a global matrix-free method holds the possibility of linar computation time
scaling rather than quadratic in the number of variables. Often the storage will
only be linear for a factorization whereas the global matrix could be dense in
the worst case and require quadratic storage complexity. For fluid problems one
would often not assemble the global matrix but rather use the finite difference
stencils on the regular fluid grid to implicitly compute matrix-vector products.
Thus, for fluid problems iterative linear system methods should be used. For
the Newton methods one can in fact use PCG. In our implementation we use
GMRES to keep our Newton methods more general.

We have not experimented with preconditioners. It should be noted that
PCG can deal with PSD matrix if for instance an incomplete Cholesky precon-
ditioner is applied. GMRES would most likely benefit from the same type of
preconditioner as the PCG method.

Newton methods can benefit if one uses a good starting iterate. For the
Newton methods that we have derived one would usually be content with using
x = 0 as the starting iterate. For problem cases where PGS applies one can
create a hybrid solution taking advantage of the robustness and low iteration
cost of PGS to quickly within a few iterations compute a starting iterate for a
Newton method.

All the iterative methods we have introduced would at some point require
stopping criteria to test if a method has converged or if some unrecoverable sit-
uation has been encountered. To monitor this convergence process a numerical
method would use a merit function. We already saw two definitions of merit
functions for the Newton methods. For the PGS the QP reformulation may serve
as the definition of the merit function. However, one may want to use the mod-
ified merit function definition

θ(x) = xT |Ax + b| . (106)

This has the benefit that the merit function is bounded from below by zero and
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the drawback that it does not work for x = 0. It is often a good principle not
to use only one stopping criterion but rather use a combination of them. For
instance an absolute stopping criterion would be

θ(xk+1) < εabs (107)

for some user-specified tolerance 0 < εabs � 1. In some cases convergence may
be too slow. In these cases a relative convergence test is convenient,∣∣θ(xk+1)− θ(xk)

∣∣ < εrel
∣∣θ(xk)

∣∣ (108)

for some user-specified tolerance 0 < εrel � 1. A simple guard against the num-
ber of iterations exceeding a prescribed maximum helps avoid infinite looping.
A stagnation test helps identifying numerical problems in the iterative values

max
i

∣∣xk+1
i − xki

∣∣ < εstg (109)

for some user-specified tolerance 0 < εstg � 1. This test usually only works
“numerically” well for numbers close to one. A rescaled version may be better
for large numbers.

Besides the above stopping criteria one may verify numerical properties. For
instance for the Newton type methods it can be helpful to verify that the Newton
direction is a descent direction. Global convergence of the Newton methods
often implies that they converge to an iterate with a zero gradient. This is not
the same as having found a global minimizer. Thus, it may be insightful to test
if the gradient of the merit function is close to zero and halt if this is the case.

What should one do in case one does not converge to something meaning-
ful? In off-line simulations one may have the luxury to restart a Newton method
with a new starting iterate and hope that the “bad” behavior will be avoided.
This may not be the best way to spend computing time or it may even be im-
possible in an interactive simulator. One remedy is to fall back on using the
gradient direction as the search direction whenever one fails to have a well
defined Newton direction to work with.

7 Convergence, Performance and Robustness Ex-
periments

We have implemented all the numerical methods in Matlab (R2010a) [Erl11]
and run our experiments on a MacBook with 2.4 GHz Intel Core 2 Duo, and
4 GB RAM on Mac OSX 10.6.8. All tests took approximately 100 computing
hours.

To quickly generate a large number of test runs and automate our experi-
ments the Matlab suite contains a small small suite of methods that can gen-
erate synthetic “fake” fluid or contact LCPs with the properties we discussed in
Section 4. Fig. 1 shows two examples of generated matrices for the LCPs. This
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Figure 1: Fill patterns of a fluid matrix (a) and a contact matrix (b). Observe
that the matrices are extremly sparse and that the fluid matrix is symmetric
whereas the contact matrix is non-symmetric.

has the added benefit of being able to quickly re-run experiments under varying
parameters and offers a great deal of control.

Our synthetic tests are no substitute for real world problems and only serve
to demonstrate the inherent convergence properties. As a remark we note that
all numerical methods have been tested on RPI’s Matlab rigid body simula-
tor [rpi] and compared against PATH [FM99]. Fischer–Newton method rivals
PATH robustness but scales better due to the iterative sub-solver. PATH seems
slightly more robust due to its non-monotone line-search method.

We examine the convergence rate of the iterative methods using a 1000-
variable fluid problem and 300-variable contact problem. The problem sizes
are limited by the Matlab programming environment. For the PSOR and PGS
methods we use the modified merit function (106). The Fischer–Newton and
minimum map Newton method uses their natural merit functions. Our results
are shown in Fig. 2. As expected we observe linear convergence rate for PSOR
and PGS while Newton methods show quadratic convergence rate.

Due to a non-singular Newton equation matrix the minimum map Newton
method does not work on contact problems. It gives up after a few iterations
where it gets into a non-descent iterate. This leaves only the Fischer–Newton
method as a real alternative for contact problems. For fluid problems the mini-
mum map Newton method finished in lower iterations. Finally we observe that
PSOR using λ = 1.4 converges faster than PGS.

Next we will examine how the different Newton equation strategies for the
Fischer–Newton method affect the overall convergence behavior. For this we
have generated a fluid LCP corresponding to 1000 variables and a contact LCP
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Figure 2: Convergence rates for a fluid (a) and a contact problem (b). For
the fluid problem we observe high accuracy of the Newton methods within few
iterations. For the contact problem only the Fischer–Newton method works.

with 180 variables. Our results are shown in Fig. 3. For contact problems we
have observed that the perturbation strategy at times uses fewer iterations than
the other strategies. For fluid problems all strategies appear similar in conver-
gence behavior. The approximation strategy always result in a less accurate
solution than the other strategies.

We performed a parameter study of PSOR for a 1000 variable fluid problem.
Here we plotted convergence rate for various relaxation parameter values as
shown in Fig. 4. Our results show that a value of λ = 1.4 seems to work best.

For all iterative methods we have measured the wall clock time for 10 it-
erations. The results of our performance measurements are shown in Fig. 5.
Not surprisingly we observe the cubic scaling of the Lemke method. This will
quickly make it intractable for large problems 3. In case of the fluid problem we
found the Fischer–Newton method to scale worse than linear this is unexpected
as we use GMRES for solving the Newton equation. The explanation of the
behavior is that in our implementation we are always assembling the Jacobian
matrix J. We do this to add extra safe guards in our implementation against non
descent iterates. If we apply dense matrices then the assembly of the Jacobian
will scale quadratically if sparse matrices are used the assembly will scale in the
number of non zeros. Theoretically, if one omitted the safe guards and used the
approximation strategy then the Fischer–Newton iteration should scale linear.

We examined the robustness of our implemented methods. For this we have
generated 100 fluid problems with 1000 variables and 100 contact problems
with 180 variables. In all cases we used a relative tolerance of 10−6, an abso-
lute tolerance of 10−3, and a maximum upper limit of 100 iterations. For each
invocation we recorded the final state as being relative convergence, absolute

3A multilevel method [Erl11] is shown. Due to space considerations and poor behavior we have
omitted all details about this method in these course notes.
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Figure 3: Convergence rates of Fischer–Newton method using different strate-
gies. A fluid (a) and a contact (b) problem are displayed. Observe that the
perturbation strategy works a little better for the contact case and that the ap-
proximation strategy is less accurate.
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Figure 4: Parameter study of PSOR. Notice that a value of approximately 1.4
seems to be best.
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Figure 5: Performance measurements for fluid problems (a) and contact prob-
lems (b).

Table 1: Robustness for 100 fluid and contact problems.
(a) Final state on fluid problems

Relative Absolute
Fischer 0 100
Min. Map. 0 100
PGS 0 100
PSOR 0 100

(b) Final state on contact problems

Absolute Non-descent
Fischer 100 0
Min. Map. 0 100

convergence, stagnation of iterates, local minimum iterate, non descent iterate,
or max iteration limit reached. Table 1 displays our results. The minimum map
Newton method does not work at all for contact problems. We observe that the
rest of the methods are robust for this test setup.

We investigated the number of iterations required for absolute and relative
convergence. The results are shown in Table 2. We observe a low standard
deviation for the Newton type methods. This suggest that one a priori can
determine suitable maximum limits for these types of methods. PSOR is on
average twice as fast as PGS. The iterations of PGS vary wildly. This implies that
PGS does not have predictable performance if accurate solutions are wanted.

Newton methods can benefit from a good initial starting iterate. To illustrate
the impact of this we have generated 100 dense PD problems with 100 variables.
We solved the problems using a zero valued starting iterate and a starting iterate
obtained from 10 iterations of PGS. In the tests we used a relative tolerance of
10−6, an absolute tolerance of 10−2, and a maximum upper limit of 30 iterations
for the Newton methods. Fig. 6 summarizes our findings.

To reach absolute convergence we observe that warm starting reduces the
number of iterations to less than or equal to half of the number of iteration
without warm starting. Considering the computational cost of PGS this is a
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Table 2: Statistics on number of iterations.
(a) Absolute convergence contact problem

Method Mean Min Max Std
Fischer 14.54 9.00 26.00 2.79

(b) Absolute convergence fluid problem

Method Mean Min Max Std
Fischer 5.00 5.00 5.00 0.00
Min map 4.07 3.00 5.00 0.29
PGS 49.38 9.00 83.00 17.48
PSOR 25.29 16.00 35.00 3.77
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Figure 6: The number of iterations used to reach absolute convergence with (w)
and without (wo) warm starting using PGS.
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good tradeoff.
We have tested the numerical methods ability to deal with over determined

systems. This is numerically equivalent to zero eigenvalues. For an increasing
ratio of zero eigenvalues we have generated 100 dense PSD problems. For all
cases we used a relative tolerance of 10−4, absolute tolerance of 10−2 and a
maximum iteration bound of 100. In our initial trial runs we have observed
that the approximate strategy works better for PSD problems whereas the other
strategies behave similar to the minimum map Newton method. We therefore
applied the approximation strategy for this experiment. Due to space consider-
ations we omit showing detailed histograms of the final solver states.

We observe that overall Fischer–Newton method seems better at reaching
relative convergence whereas the minimum map Newton is less successful. For
large ratios of zero eigenvalues we clearly see that both Newton methods get
into trouble. A high number of zero eigenvalues cause ill conditioning or even
singularity of the Newton equations and result in a local minimum or a non
descent iterate. In all test runs the PGS and PSOR methods ends up reaching
their maximum iteration limit. This is a little misleading as it does not mean
they end up with a bad iterate rather it implies they converge slowly.

8 Discussion and Future Work

We have shown the LCP model for contact forces has a coefficient matrix that is
non-symmetric and has a zero-diagonal block. This limits the type of numerical
methods that can be used to either pivoting methods like Lemke or Keller, or
Newton methods like the Fischer–Newton method. There exist general purpose
Newton methods for LCPs such as PATH from CPNET [FM99]. PATH is a general
solver and can solve nonlinear complementarity problems (NCPs) whereas the
Newton-based methods we present are more lean and mean and tailored for
the specific LCPs that is encountered in physics-based animation. For instance
PATH scales quadratically in the number of unknowns as it requires the entire
A-matrix of the LCP. The Fischer–Newton method we have outlined can ex-
ploit factorizations or numerically approximate the matrix-vector products and
achieve better scaling than PATH.

If one dislikes pivoting or Newton methods then one may apply the idea
of staggering [KSJP08] to the LCP contact force model (27). In terms of our
notation this would require us to solve the two coupled LCPs,

0 ≤ Bnnλn + (bn + Bntλt) ⊥ λn ≥ 0, (110a)

0 ≤
[
Btt e
−eT 0

] [
λt
β

]
+

[
bt + Btnλn

µλn

]
⊥

[
λt
β

]
≥ 0. (110b)

Taking a staggered approach one solves the top-most LCP first (normal force
problem) and then the bottom-most LCP second (the friction force problem)
and continues iteratively until a fixed-point is reached. Observe that the normal
force problem has a symmetric PSD coefficient matrix Bnn making QP refor-
mulations possible whereas the frictional problem has a non-symmetric matrix.
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One may exploit a QP reformulation anyway, because the friction LCP corre-
sponds to the first-order optimality conditions of the QP problem

λ∗t = arg min
1

2
λTt Bttλt + cTt λt (111)

subject to
λt ≥ 0 and cn − eTλt ≥ 0, (112)

where cn = µλn and ct = bt + Btnλn. Thus, any convex QP method can be
used to solve for the normal and friction forces and one is guaranteed to find
a solution for each subproblem. Whether the sequence of sub QP problems
converge to a fixed point is not obvious.

All the methods we have covered could in principle be applicable for the
fluid LCP problem. The splitting/QP-based PGS methods are straightforward to
apply even in cases were one does not have the global matrix A. For the Newton
type methods one could evaluate the finite difference approximations directly
on the regular grid to avoid building the A-matrix. Given the properties of
the A-matrix these methods should be able to use PCG for solving the Newton
equations. This could result in fast Newton methods with quadratic convergence
rates and computing time that scales linear in the number of fluid grid nodes.

Table 3 summarizes properties of the numerical methods we have covered
in these notes. Observe that the column “A-matrix properties” is limited to the
problem classes we used in our discussions.
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Table 3: Numerical properties of numerical methods. The table shows worst-case complexities under the assumption that direct
methods are used for linear systems. Convergence properties are not listed for pivoting methods as these give exact solutions in
one single iteration. Time complexity refers to per iteration cost for the iterative methods and total cost for pivoting methods.

A-Matrix Time Storage Convergence Global
Method Type Properties Complexity Complexity Rate Convergence
(splitting) PGS Iterative Nonzero diagonal O(n) O(n) Linear No
(QP) PGS/PSOR Iterative Symmetric PSD O(n) O(n) Linear Yes
Dantzig Pivoting Symmetric PD O(n4) O(n2) - -
Lemke Pivoting P-matrix O(2n) O(n2) - -
Minimum map Newton Iterative No assumptions O(n3) O(n2) Quadratic Yes
Fischer–Newton Iterative No assumptions O(n3) O(n2) Quadratic Yes
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There are other types of methods that we have not covered in these notes,
such as the instance interior point (IP) methods, trust region methods and con-
tinuation methods. One can develop any of these using the QP reformulation of
the LCP. For LCPs with non-symmetric coefficient matrices, the problems is not
quite as straightforward. We leave these type of methods for future work.

Pivoting and PGS methods are common-place today. The Newton meth-
ods we have introduced do offer better convergence behavior than PGS-type
methods and run faster than pivoting methods. We speculate that the iterative
methods for the Newton equation should fit GPU implementation well and thus
benefit from hardware that is well suited for parallel matrix-vector products.
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